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ABSTRACT

This chapter reviews detection of materials on solid and liquid (lakes and ocean) surfaces 
in the solar system using ultraviolet to infrared spectroscopy from space, or near space (high 
altitude aircraft on the Earth), or in the case of remote objects, earth-based and earth-orbiting 
telescopes. Point spectrometers and imaging spectrometers have been probing the surfaces of 
our solar system for decades. Spacecraft carrying imaging spectrometers are currently in orbit 
around Mercury, Venus, Earth, Mars, and Saturn, and systems have recently visited Jupiter, 
comets, asteroids, and one spectrometer-carrying spacecraft is on its way to Pluto. Together 
these systems are providing a wealth of data that will enable a better understanding of the 
composition of condensed matter bodies in the solar system.

Minerals, ices, liquids, and other materials have been detected and mapped on the Earth 
and all planets and/or their satellites where the surface can be observed from space, with the 
exception of Venus whose thick atmosphere limits surface observation. Basaltic minerals (e.g., 
pyroxene and olivine) have been detected with spectroscopy on the Earth, Moon, Mars and 
some asteroids. The greatest mineralogic diversity seen from space is observed on the Earth and 
Mars. The Earth, with oceans, active tectonic and hydrologic cycles, and biological processes, 
displays the greatest material diversity including the detection of amorphous and crystalline 
inorganic materials, organic compounds, water and water ice.
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Water ice is a very common mineral throughout the Solar System and has been unambigu-
ously detected or inferred in every planet and/or their moon(s) where good spectroscopic data 
has been obtained. 

In addition to water ice, other molecular solids have been observed in the solar system 
using spectroscopic methods. Solid carbon dioxide is found on all systems beyond the Earth 
except Pluto, although CO2 sometimes appears to be trapped in other solids rather than as an ice 
on some objects. The largest deposits of carbon dioxide ice are found on Mars. Sulfur dioxide 
ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian 
system. 

Saturn’s moon Titan probably has the most complex active extra-terrestrial surface 
chemistry involving organic compounds. Some of the observed or inferred compounds include 
ices of benzene (C6H6), cyanoacetylene (HC3N), toluene (C7H8), cyanogen (C2N2), acetonitrile 
(CH3CN), water (H2O), carbon dioxide (CO2), and ammonia (NH3). Confirming compounds 
on Titan is hampered by its thick smoggy atmosphere, where in relative terms the atmospheric 
interferences that hamper surface characterization lie between that of Venus and Earth. 

In this chapter we exclude discussion of the planets Jupiter, Saturn, Uranus, and Neptune 
because their thick atmospheres preclude observing the surface, even if surfaces exist. However, 
we do discuss spectroscopic observations on a number of the extra-terrestrial satellite bodies. 
Ammonia was predicted on many icy moons but is notably absent among the definitively 
detected ices with possible exceptions on Charon and possible trace amounts on some of the 
Saturnian satellites. Comets, storehouses of many compounds that could exist as ices in their 
nuclei, have only had small amounts of water ice definitively detected on their surfaces from 
spectroscopy. Only two asteroids have had a direct detection of surface water ice, although its 
presence can be inferred in others. 

INTRODUCTION

The remote detection, identification, and mapping of materials using spectroscopy 
and imaging spectroscopy has been a rapidly advancing and maturing science over the last 
two decades, and promises significant advances into the future. Spectrometers and imaging 
spectrometers are now flying on many spacecraft throughout the Solar System, providing a 
wealth of new data that has led to many new discoveries. As of this writing, spectrometers and 
imaging spectrometers are in orbit or have recently flown past Mercury, Venus, Earth, Earth’s 
Moon, Mars, several asteroids, Jupiter, Saturn, and on the way to Pluto. Aircraft-based sensors 
also play a key role in terrestrial imaging spectroscopy. This chapter will give a few examples 
of this very large and diverse field. The information is so vast, that the analogy for this chapter 
will be like taking a drink from Niagra Falls, thus we can cover only a small portion of the field. 
In order to limit the scope of this chapter, we limit discussions to spectroscopy of reflected 
solar radiation and thermally emitted light, and mostly exclude gamma-ray or radio wavelength 
spectroscopy. We only discuss remote detections across space (fly-by or orbiting spacecraft or 
in the case of the Earth, high altitude aircraft, above about 15 km). We exclude surface landers 
on other moons and planets.

Spectroscopy is a tool that has been used for decades to identify, understand, and quantify 
solid, liquid and gaseous materials, especially in the laboratory. In disciplines ranging from 
astronomy to chemistry, spectroscopic measurements are used to detect absorption features due 
to specific chemical bonds or electronic transitions, with detailed analyses used to determine the 
abundance and physical state of the detected absorbing species. Spectroscopic measurements 
have a long history in the study of the Earth and planets (e.g., Hunt 1977; Goetz et al. 1985; 
Pieters and Englert 1993; Clark 1999, Clark et al. 2003, 2007).
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Reflectance and emittance spectroscopy of natural surfaces are sensitive to specific 
chemical bonds and transitions in materials, whether solid, liquid or gas. Spectroscopy has 
the advantage of being sensitive to both crystalline and amorphous materials, unlike some 
diagnostic methods, like X-ray diffraction. Spectroscopy’s other main advantage is that it can 
be used up close (e.g., in the laboratory) to far away (e.g., to look down on the Earth, or up at 
other planets). Spectroscopy’s historical disadvantage for materials identification is that it is 
sometimes too sensitive to small changes in the chemistry and/or structure of a material. The 
variations in material composition often cause shifts in the position and shape of absorption 
bands in the spectrum. Thus, with the vast variety of chemistry typically encountered in the 
real world, spectral signatures can be quite complex and sometimes unintelligible. However, 
that is now changing with increased knowledge of the natural variation in spectral features and 
the causes of the shifts. As a result, the previous disadvantage is turning into a huge advantage, 
allowing us to probe ever more detail about the chemistry of our natural environment (Pieters 
and Englert 1993; Clark 1999, Clark et al. 2003, 2007, 2013 and references therein).

Spectroscopic remote sensing from space, or high altitude aircraft requires the detection of 
reflected solar radiation at shorter wavelengths or thermally emitted light at longer wavelengths. 
The transition of predominantly reflected solar to predominantly emitted thermal radiation 
varies as a function of distance from the sun, and the object’s albedo. The transition from 
reflected solar to emitted thermal emission occurs at approximately 1.5 mm at Mercury, 2.5 
mm for our Moon, 3 mm for the Earth, 3.5 mm for Mars, ~6 mm for Jupiter’s satellites, ~7 mm 
for Saturn’s satellites, and beyond about 10 mm for the Neptune system (e.g., see Clark 1979).

Ice is probably the most abundance single mineral found in the Solar System. Ice 
technically refers to the mineral ice, solid H2O, that is found naturally on the Earth. In the 
planetary sciences “ice” has become known as any volatile material that is frozen. Thus, in the 
planetary literature we discuss water ice, CO2 ice, SO2 ice, benzene ice, methane ice, etc. This 
chapter will also review such ices found on the surfaces of planets, their satellites, and small 
bodies in the Solar System.

The major elements that formed the solar system were hydrogen, carbon, nitrogen, and 
oxygen, often referred to as CHON material. When chemically combined, these elements 
produce molecules with low condensation temperatures—volatiles—with H2O being the most 
refractory of these. Sulfur can also contribute to the volatile inventory, and the abundances of 
CHON + S material can be appreciable. The inferred molar elemental abundances present in 
the protoplanetary nebula, relative to hydrogen, of O, C, N, and S are 0.085, 0.036, 0.011, and 
0.002, respectively (Anders and Grevesse 1989). 

Under the reducing conditions produced by the presence of H2, the expected closed-shell 
molecules are H2O, CH4, NH3, and H2S and these are observed as volatile gases or condensates 
in the atmospheres of the giant planets. Depending on thermal and chemical conditions in 
protoplanetary and protosolar nebulae, some or all of the above molecules, as well as those 
formed in more oxidizing conditions, will be incorporated in the forming satellites, comet 
nuclei, and dwarf planets. Examples of some stable volatiles formed under oxidizing conditions 
are CO, CO2, N2, and SO2. Minor species may include CH3OH, HCN, HCNO, etc. These 
volatiles condense in varying proportions at rates that are highly dependent on temperature and 
molecular interaction energies, ultimately forming the diverse ices that are found on outer solar 
system bodies.

In their pure states, molecules can condense in crystalline or amorphous forms, with 
crystalline compounds exhibiting a variety of polymorphs. The occurrence of a particular phase 
depends on the formation conditions, particularly the temperature and starting state (gaseous or 
liquid), and the subsequent thermal and irradiation history. For example, the freezing of liquid 
water produces hexagonal ice whereas amorphous, cubic, or hexagonal ice can be produced by 
condensation of the vapor at different temperatures. 
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Most minerals on and within solar system bodies are not pure, but contain other minerals 
or impurities. These mixed minerals can exist in many forms. The minor constituent can be 
randomly dispersed as isolated molecules within the crystalline or amorphous matrix (a solid 
solution). These molecules can be substitutional or interstitial, or trapped within defects or 
closed channels, sometimes existing as micro-atmospheres in voids (e.g., spectroscopically 
interacting O2 molecules in H2O ice, (Johnson and Jesser 1997; Loeffler et al. 2006) or CO2 
gaseous inclusions in minerals. 

Closer to the sun, where temperatures in the solar nebula were hotter, rock forming min-
erals condensed in greater abundances. The solid surfaces of the terrestrial planets, Mercury, 
Venus, Earth and Mars are dominated by silicate and basaltic mineralogies and their weathering 
products.

DETECTION OF MINERALS AND THEIR  
SPECTRAL PROPERTIES

The main method for remotely detecting minerals and compounds is by studying sunlight 
reflected from the surface under study (reflectance spectroscopy), and/or the heat emitted in the 
thermal infrared (thermal emission spectroscopy). Materials absorb light at specific characteristic 
wavelengths, thus spectroscopy can be used to directly and unambiguously detect a compound 
(given sufficient spectral range, resolution and signal-to-noise ratio). Other methods of remote 
sensing, such as neutron absorption only sense the presence of atoms, so do not directly detect a 
specific chemical compound, and require instrumentation in close proximity to the surface (e.g., 
low orbit). Reflectance and emittance spectroscopy, however, can be used to probe surfaces 
both near and to the outer reaches of the Solar System from the Earth’s surface as well as from 
spacecraft. See Clark (1999) for a review of the different types of transitions and vibrations that 
lead to absorption features in spectra. 

While absorption features are diagnostic of material identities, it is the scattering processes 
that control the light returned from a surface to a detector. Scattering occurs from mineral-
vacuum (or gas) interfaces, grain boundaries or crystal imperfections, or from discrete 
impurities mixed in the surface of a material such as a particulate coating. In order to make an 
unambiguous detection of a particular material there must be a high enough intensity signal 
returned to the detector over a sufficient spectral range and with sufficient resolution to resolve 
diagnostic spectral features. Figure 1 illustrates the issue of sufficient spectral resolution for 
three operational terrestrial sensors compared to a laboratory spectrum. 

A significant problem in detecting materials from space using reflected sunlight is correction 
of remotely sensed data for effects of the solar spectrum, and absorption and scattering from 
any atmosphere between the surface and spectrometer. Figure 2 gives an example. Remotely 
sensing surface composition through such an atmosphere poses challenges. The atmospheric 
transmission and scattering effects must be accurately corrected, however the atmospheric 
models are still evolving and correction methods are complex. Clark et al. (2002, 2003) discusses 
various methods for correcting terrestrial imaging spectroscopy data. Transmission and aerosol 
scattering is a significant problem on only 4 bodies in the Solar System where we can observe 
the surface: Venus, Earth, Mars, and Titan, Venus being the most difficult. Model transmissions 
for the Earth, Mars and Titan are shown in Figure 3. The mid-infrared transmittance of the 
Earth’s atmosphere is shown in Figure 4, which shows even less transmission, mostly due to 
absorption by water.

Another problem in remotely sensing compounds is that the apparent strength of spectral 
features changes with grain size of the material. Not only do the absorption features change 
shape, the overall shape of the spectrum can also change. This is illustrated in Figure 5 with Ice.
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Figure 1. Comparison of sensors with different spectral resolutions. Landsat TM with 6 bands in the vis-
ible to near-infrared spectrum cannot resolve any absorptions typical in minerals. The MODerate resolution 
Imaging Spectrometer (MODIS) has enough spectral channels to barely resolve some spectral features in 
the visible portion of the spectrum, but not in the important near-infrared. The Airborne Visible and Infra-
Red Imaging Spectrometer (AVIRIS), however, has sufficient spectral range and resolution to resolve many 
common absorption bands found in a wide variety of minerals and other compounds. The gray bands on 
the AVIRIS spectrum represent regions of the terrestrial atmosphere with strong absorptions. The spxnnnn 
entries are U.S. Geological Survey spectral IDs. Adapted from data in Clark (1999) and Clark et al. (2007).

Figure 2. Observed signal of sunlight reflected from the Earth’s surface measured at a height of 20 km by 
AVIRIS. The red line is the derived path radiance from the signal, light scattered by the atmosphere in the 
direction of the detector. To derive a surface reflectance spectrum, the solar spectrum, path radiance, and 
atmospheric absorption needs to be removed. DN stands for “Data Number” and is a relative scale. From 
Clark et al. (2002).
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Figure 3. Model 1-way atmospheric transmission spectra for the Earth, Mars, and Titan. The dominant 
absorption in the Earth’s atmospheric transmission is water vapor, with ozone providing the UV drop. The 
dominant absorption in Mars’ atmospheric transmission is carbon dioxide and dust aerosol absorption plus 
scattering. The dominant absorption in Titan’s atmospheric transmission is methane and hydrocarbon aero-
sol absorption plus scattering. Earth spectrum from Clark (1999), Mars from P. Irwin (personal communica-
tion, 1997), and Titan from Clark et al. (2010a). The transmission of Venus’ atmosphere would be too low to 
register on this plot; transmission at 1 mm is <~ 0.00002 (Baines et al. 2000).

Figure 4. Atmospheric transmittance in the mid-infrared is compared to scaled grey-body spectra. Most 
of the absorption is due to water. Carbon dioxide has a strong 15-mm band, and the dotted red line shows 
the increased absorption due to doubling CO2. Also shown is the black-body emission at 288 K and the 
grey-body emission from water and a sandstone scaled to fit on this transmittance scale. The water and sand-
stone curves were computed from reflectance data using: 1 - reflectance times a black-body at 288 Kelvin. 
Adapted from Clark (1999).
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Spectroscopic characterization of minerals is well-covered in Pieters and Englert (1993), 
Clark (1999), and Clark et al. (2007), and references therein. Detection strategies are discussed 
in Clark et al. (2003) and references therein. Spectroscopy of ices are reviewed in Clark et al. 
(2013) and more briefly below.

Detection of a particular mineral on a planetary surface is only one aspect of understanding 
the geology and chemistry of the surface. Mapping the locations and geologic context greatly 
enhances our understanding of planetary surfaces, including their origin. Mapping solid and 
liquid compounds on a planetary surface is accomplished with imaging spectrometers. There 
are several types of imaging spectrometers. Two widely used diffraction grating types include 
whiskbroom scanners which collect spectra in a cross-track manner by using an oscillating 
mirror to sequentially reflect light from each spatial location in a scene to a spectrometer one 
pixel at a time, and pushbroom scanners which measure the spectra of all the pixels across an 
image simultaneously using an area array detector and the forward motion of the spacecraft. 
Whiskbroom scanner data are more easily calibrated because the same detector array measures 
the spectrum of every pixel in the scene, but dwell time on a given pixel is relatively short so 
images can be noisy. Pushbroom scanners have longer dwell times on each pixel so provide 
a less noisy image, but images are commonly plagued by along-track image artifacts caused 
by miscalibration of adjacent pixel array elements. See Goetz et al. (1985) and Clark et al. 
(2003) for more details. Whiskbroom systems include the NASA JPL classic Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS), flown on high altitude aircraft above the Earth 
(Green et al. 1990) and the NASA Visual and Infrared Mapping Spectrometer (VIMS) currently 
orbiting Saturn (Brown et al. 2005a). Pushbroom imaging spectrometers include the Compact 
Reconnaissance Imaging Spectrometer for Mars (CRISM) (Murchie et al. 2007) which is 
currently orbiting Mars on the Mars Reconnaissance Orbiter (MRO). Broadband imaging 
systems like the Mars Themis (Christensen et al. 2004) and HiRISE (McEwen et al. 2007) are 
not discussed because they are not spectrometers, nor imaging spectrometers.

Figure 5. Illustration of changing ice absorption band shapes and strengths with grain size. The near-infra-
red spectral reflectance of A) a fine grained (~200 mm diameter) water frost, B) medium grained (~300 mm) 
frost, C) coarse grained (400-2000 mm) frost and D) an ice block containing bubbles and frost on the surface. 
The larger the effective grain size, the greater the mean photon path that photons travel in the ice, and the 
deeper the absorptions become. Curve D is very low in reflectance because of the large path length in ice but 
scattering from fine frost at the surface raises the reflectance. Adapted from data in Clark (1981), and Clark 
and Lucey (1984) with level corrections from the reflectance standard.
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MINERAL AND FROZEN VOLATILES SPECTRAL SIGNATURES

H2O (ice)

Water ice phases and spectral features as a function of temperature are discussed in detail 
by Mastrapa et al. (2013). Ice forms multiple crystal structures, including cubic (Ic), hexagonal 
(Ih), and amorphous solids (Hobbs 1975 and references therein) which might be encountered 
on planetary surfaces in the solar system. The spectra of crystalline water ice (Fig. 5, and see 
Grundy and Schmitt 1998) display particularly broad absorptions because the water molecules 
are orientationally disordered. In hexagonal or cubic ice, the oxygen atoms are in a well-defined 
crystal structure, but the hydrogen bonds point randomly toward neighboring oxygen atoms.

Mastrapa et al. (2008) measured the optical constants of crystalline and amorphous ice 
from 20 to 120 K and reviewed formation conditions for amorphous versus crystalline water 
ice. Below about 135 K, amorphous ice is expected to condense from the vapor phase if the 
rate of growth is slow. Thus, we might expect amorphous ice to be present in the Jupiter system 
and beyond. However, as we will see, with the probable exception of the Jupiter system, where 
surfaces are being irradiated by particles caught in Jupiter’s magnetic field, outer solar system 
surfaces are dominated by crystalline H2O. 

In amorphous ice, the absorptions shift to shorter wavelengths. The Fresnel peak near 3.1 
mm also shifts to shorter wavelengths, and the temperature sensitive 1.65-mm absorption be-
comes very weak. See Clark et al. (2013). 

SO2 ice

SO2, a colorless gas at room temperature, is a common terrestrial volcanic (and industrial) 
effluent and also present in Venus’s atmosphere, possibly from recent volcanic activity. It is the 
major component emitted from Jupiter’s volcanically active moon Io. SO2 is a bent molecule of 
the form O-S-O and is a stable sulfoxide, with SO and S2O being much less stable. Oxidation 
of SO2 in the presence of H2O produces sulfuric acid, evident in the Earth’s atmosphere as acid 
rain and in Venus’s atmosphere as the ubiquitous sulfuric acid clouds and haze. 

SO2 is more refractory than NH3, it liquefies at ~263 K and freezes at ~200 K. Within the 
temperature range of 90 K to 120 K, appropriate for Jovian satellites, the SO2 vapor pressure 
varies by five orders, from about 10−4 nbar to 10 nbar. SO2 is amorphous when condensed at tem-
peratures < 70 K, but crystallizes at temperatures > 70 K (Schmitt et al. 1994). Condensed SO2 
forms many different textures (Nash and Betts 1998). The condensation, evaporation, and meta-
morphism of pure SO2 and mixed ices have been discussed by Sanford and Allamandola (1993). 

Useful reviews of SO2 properties by Schmitt et al. (1998b) and Nash and Betts (1998) are 
found in the Solar System Ices book (Schmitt et al. 1998a). Infrared and ultraviolet spectroscopy 
of SO2 is summarized in Carlson et al. (2007).

Nitrogen ice (N2)

Although nitrogen is cosmochemically abundant, the high volatility of N2 ice makes it un-
stable except at extremely low temperatures characteristic of the outer edge of the Solar System. 
There are two low-pressure phases of N2 ice. Above 35.61 K, the stable form is beta N2 ice, an 
orientationally-disordered hexagonal close packing solid (Scott 1976). It is difficult to detect 
spectroscopically, because N2 is a non-polar molecule in which vibrational absorptions are not 
easily excited. Only when an N2 molecule collides with another molecule is a dipole moment 
temporarily induced, enabling a photon around 4.25 mm to excite its 1-0 fundamental vibration-
al mode (e.g., Shapiro and Gush 1966; Sheng and Ewing 1971). This collision-induced absorp-
tion is relatively broad (~100 cm−1 in wavenumber units), compared with gas-phase absorptions 
due to fixed dipole moments, owing to the modulation of the vibrational transition by the trans-
lational motion of the colliding pair. See Clark et al. (2013) for further review and references.
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Hydrocarbons and other ices

Hydrocarbons are a diverse category of organic compounds, comprising numerous 
families without heteroatoms and with functional groups of solely hydrogen and carbon 
atoms. The simplest hydrocarbons are the alkanes – singly bonded molecules with no reactive 
functional groups. Hence, they tend to combust at relatively high temperatures, even though 
they are composed entirely of low atomic weight atoms, and have a generic chemical formula 
of CnH2n+2. If the carbon backbone contains a C-C double bond, the hydrocarbon is termed an 
alkene, and it has a formula of CnH2n (e.g., propene, C3H6); with a C-C triple bond, it is called an 
alkyne whose formula is CnH2n−2 (e.g., propyne, C3H4). In the singly bonded alkanes, hydrogen 
atoms will bond to all the remaining positions on the carbon atom, and they are known as 
saturated hydrocarbons. Unsaturated hydrocarbons then, are those with doubly or triply bonded 
carbon atoms, and they will have less than their ‘full’ complement of hydrogen atoms. Together, 
these straight (or branched) chain hydrocarbons are known as ‘aliphatic’ compounds, and also 
include such derivatives as fatty acids (Wade 2005).

In general, spectra of different families share different spectral characteristics while spectral 
properties are similar within a family (also called group or series). For example, Figure 6 shows 
spectral differences among ices in the alkane, alkene, and alkyne groups from Clark et al. 
(2009). In alkanes, the C-H stretch fundamental occurs near 3.4 µm, whereas in the C-C double 
bonded alkenes, the C-H stretch shifts closer to 3.2 mm, and in the C-C triply bonded alkynes, 
the C-H stretch shifts to nearly 3.0 mm (Fig. 6).

The carbon skeleton can close in on itself in two ways: by creating a ring of singly-bonded 
carbon atoms of any length equal to or greater than three (cycloalkanes, known as alicyclic 
hydrocarbons), or by the overlapping of p orbitals from adjacent carbon atoms into pi (π) bonds 
to create a benzene ring (C6H6). The benzene ring with overlapping p orbitals is particularly 
stable, and forms the basis of the aromatic hydrocarbon family.

Most organic molecules are infrared active, displaying absorption features associated 
with stretching and bending vibrations. For example, the C-H stretch fundamental of aromatic 

Figure 6. Reflectance spectra of propane, propene, propyne and benzene ices. From Clark et al. (2009).
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hydrocarbons occurs near 3.3 mm (Fig. 6) and a bending mode absorption has been used to 
detect benzene ice on Saturn’s moon Titan. Because these transitions are specific to the atoms 
and their chemical bonds, and are similar regardless of the type of larger molecule within which 
they are contained, an examination of the IR spectrum will reveal an enormous amount of 
information about an unknown compound (e.g., as seen in Fig. 6). Clark et al. (2009) observed 
that the spectral complexity of organic ices first increases as molecular weight increases, then 
decreases at higher molecular weights. The loss of spectral structure at high molecular weights 
is probably due to many overlapping absorptions averaging out small details.

Methane ice (CH4)

Methane deserves special attention as the smallest and simplest alkane, as well as being 
the hydrocarbon most widely observed as an ice on solar system bodies. It is readily detected 
spectroscopically by means of numerous overtones and combinations of four fundamental 
vibrational transitions. These are a symmetric mode n1(A1) at 2914 cm−1 (3.43 mm), a doubly 
degenerate n2(E) bending mode at 1526 cm−1 (6.55 mm), and triply degenerate stretching n3(F2) 
and bending ν4(F2) modes at 3020 and 1306 cm−1 (3.31 and 7.66 mm), respectively (Grundy et 
al. 2002). Two different condensed phases occur at zero pressure. At temperatures below 20.4 
K, CH4 exists as a cubic crystal, whereas above that temperature, it loses its orientational order 
and long-range coordination, resulting in broadened bands similar to (but not identical to) those 
of liquid methane (e.g., Ramaprasad et al. 1978; Martonchik and Orton 1994). Temperature-
dependent spectra have been measured for methane ice between 0.7 and 5 mm, revealing subtle 
changes with temperature that offer an as-yet unexploited potential for remote sensing of CH4 
ice temperatures (Grundy et al. 2002). Methane molecules dispersed in nitrogen ice exhibit 
slightly different spectral behavior, characterized by subtle wavelength shifts toward blue 
wavelengths as well as the loss of a weak transition at 1.69 mm (Quirico et al. 1997b). This 
property provides a way to remotely distinguish diluted from pure CH4, as well as the potential 
to detect smaller quantities of nitrogen ice than can be readily detected through observation of 
the much weaker N2 ice absorptions, with specific applications discussed later in this chapter.

MINERALS AND COMPOUNDS IN THE SOLAR SYSTEM  
DETECTED WITH SPECTROSCOPY

We will now discuss the detections of minerals and other compounds on planets and their 
satellites in our Solar System.

Terrestrial planets

Mercury. Vilas et al. (2012), Izenberg et al. (2012), and Riner and Lucey (2012) have 
searched for spectral features in the MErcury Surface, Space Environment, GEochemistry, and 
Ranging (MESSENGER) spacecraft data of the planet Mercury. To date, no plausible spectral 
features for identifying mineralogy, for example, pyroxene absorptions like those seen on the 
Moon have been found. It appears that the surface of Mercury is intensely space-weathered, 
where the surface minerals are partially destroyed, leaving rinds enriched in nano-phase 
metallic iron. See Hapke (2001) and Chapman (2004) for more on terrestrial space weathering, 
and Clark et al. (2012) for space weathering effects in the outer solar system.

Venus. Venus has a thick highly scattering atmosphere, making it the most difficult surface 
to be detected from space (excluding Jupiter, Saturn, Uranus, and Neptune whose surfaces, if 
they exist are impossible to see with UV to far infrared light). Three spacecraft have detected 
thermal emission from the surface using near-infrared wavelengths: Galileo NIMS (Carlson et 
al. 1991), Cassini VIMS (Baines et al. 2000), and Venus Express VIRTIS (Müller et al. 2008, 
Titov et al. 2009 and references therein). Baines et al. (2000) showed that it could be possible to 
use a few windows in the Venetian spectrum to detect broad electronic absorptions due to iron 
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in surface minerals and Hashimoto et al. (2008) have used these windows and suggested felsic 
materials in Venus’s highlands.

Earth. The Earth is the only planet whose temperature is near the melting point of water 
where both liquid and solid water exists on the surface. This condition enables a complex 
hydrologic cycle of both solid and liquid water eroding, reshaping and weathering the surface. 
Active plate tectonics recycles crustal minerals, and creates active volcanism which leads to a 
variety of important mineral-forming conditions. Over three thousand minerals have been found 
naturally occurring on the Earth (e.g., Fleischer and Mandarino 1995). Dozens of minerals 
have been detected at the Earth’s surface using spectroscopy from high-altitude aircraft (e.g., 
the NASA JPL Airborne Visible/Infrared Imaging Spectrometer, AVIRIS), commercial aircraft 
spectrometers, and spacecraft. The Earth’s high carbon and nitrogen environment, energy 
sources, and hydrologic cycle provide a unique surface composition with abundant water, 
organic compounds, and life. The Earth’s surface is dominated by liquid water, solid water, 
vegetation, and, in some locations, minerals in exposed rocks and soils. 

While there are many imaging spectrometers on the way to, or have recently flown by or 
orbited, or are currently orbiting planets and satellites throughout the Solar System, very oddly 
there is only one (non-military) true imaging spectrometer in orbit around the Earth, the aging 
EO-1 Hyperion system (e.g., Barry et al. 2001). Because the Hyperion instrument is relatively 
old and its near-infrared performance is significantly lower than that of aircraft systems, many 
studies rely on systems like the NASA JPL Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) system (Green et al. 1990) and other commercial systems which fly at lower altitudes.

The number of terrestrial applications of spectroscopy from space or aircraft is stunning, 
ranging from mineral mapping (e.g., Clark et al. 2003 and references therein) as shown in 
Figures 7a and 7b, acidic mine drainage and mineralization impact (e.g., Swayze et al. 2000), 
ecosystems mapping, vegetation species and chemistry (e.g., Kokaly et al. 2003; Clark et 
al. 2003; Ustin et al. 2009 and references therein), ice and snow mapping, including snow 
grain size and snow-water-vegetation mixtures (e.g., Clark et al. 2003; Painter et al. 2003 and 
references therein), mapping chlorophyll in water (Clark et al. 2003; Clark and Wise 2011), 
assessments of environmental disasters (the World Trade Center Disaster: Clark et al. 2001, 
2006; the 2010 Gulf of Mexico Deepwater Horizon oil spill: Clark et al. 2010b), and detection 
of fires/thermal hot spots through thick smoke, determining temperature and sub-pixel areal 
extent (Clark et al. 2003, 2006). Remote sensing had been tried for decades to derive a method 
to determine the amount of oil on the ocean’s surface without much success. But in the most 
recent disaster, the Gulf of Mexico 2010 oil spill, by using absorption features in oil and the 
spectral resolution of AVIRIS, Clark et al. (2010b) simultaneously solved for the oil:water ratio 
of intimate mixtures (e.g., water-in-oil emulsions), thickness of the mixture and their sub-pixel 
areal fraction to derive oil volume per pixel. Such unmixing is only possible using the many 
wavelengths provided by a visible to near-infrared imaging spectrometer.

The Earth’s Moon. Water ice is thought to exist in the permanently shadowed craters on 
the moon and neutron spectrometer data from Lunar Prospector (Feldman et al. 1998, 2000, 
2001) showed that hydrogen is present in the lunar polar regions. More recently Clark (2009), 
Pieters et al. (2009), and Sunshine et al. (2009) reported that adsorbed water is extensive in 
the lunar surface raising the likelihood that some of it has migrated and is trapped in the polar 
regions. Coleprete et al. (2010) reported detection of water vapor and water ice in the ejecta 
from the NASA LCROSS impact into South Pole crater Cabeus A. They also claim detection of 
other volatile compounds. Paige et al. (2010) reported temperatures as low as 38 K in Cabeus 
A, where many volatile compounds might exist as ices.

The Chandrayaan-1 spacecraft with the Moon Mineralogy Mapper (M3) is the only imaging 
spectrometer to orbit the Moon covering the reflected solar spectral range. The M3 instrument 
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has been used to detect and map a variety of minerals on the Moon, including the pyroxene solid 
solution series, olivines, feldspars and spinels (e.g., Pieters et al. 2011 and references therein). 
Kramer et al. (2011) showed an interesting link between the enigmatic lunar swirls which seem 
to lack hydroxyl that occurs in the surrounding rocks and soils.

Mars. Orbital high spectral resolution mapping of Mars over the last two decades with the 
Thermal Emission Spectrometer (TES) on Mars Global Surveyor (Christiansen et al. 1992), 
Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) on Mars Express 

Figure 7. (a) Imaging spectroscopy mapping results from AVIRIS imaging spectrometer data over Cuprite, 
Nevada for absorptions in the 1-mm spectral region due to Fe2+ or Fe3+. All the Fe2+ - Fe3+ absorptions overlap 
making separation difficult. Yet through spectroscopic analysis, not only can the minerals be distinguished, 
but mixtures could be distinguished based on the shape of the overlapping absorption features. From Swayze 
et al. (2003) with modifications. 
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(Bibring et al. 2004a), and the Compact Reconnaissance Imaging spectrometer for Mars (CRISM) 
on the Mars Reconnaissance Orbiter (Murchie et al. 2007) has led to numerous discoveries of 
mineral phases on the surface. One of the main goals that these imaging spectrometer share 
is the search for minerals formed during the early part of Martian history when water existed 
temporarily at the surface and for longer periods at depth. The spectral signatures of minerals 
frequently provide information about their environment of formation. Some minerals hint at 
metamorphic processes caused by elevated temperature and pressure caused by impacts. Clays 
and evaporites require water to form and are sensitive to formative pH conditions that can 
influence the preservation of fossils. Kaolin group minerals and the sulfate mineral alunite 

Figure 7. (b) Imaging spectroscopy mapping results from AVIRIS imaging spectrometer data over Cuprite, 
Nevada. The results distinguish kaolinite, alunite, carbonate, mica and other minerals, separate kaolinite 
from alunite-dominated areas, and also indicate where both occur as mixtures. From Swayze et al. (2003) 
with modifications.
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may indicate the past presence of hydrothermal activity around hot spring deposits or acidic 
paleolakes. In this way, spectroscopists can use orbitally detected minerals as proxies to focus 
rover missions on the most promising sites in the search for evidence of past life. 

During its operation from 1996 to 2006 the TES interferometer, which measured mid-
infrared wavelengths for 3 km pixels on the surface, was used to discover concentrations of 
hematite in Meridiani Planum (Christensen et al. 2000), leading to its selection as a landing 
site for the Mars Exploration Rover Opportunity. Other mineralogic discoveries include olivine 
in Nili Fossi (Hoefen et al. 2003), globally distributed pyroxene (Christensen et al. 2001), 
and possibly carbonate (Bandfield et al. 2003) and zeolite minerals (Ruff 2004) distributed 
globally in the Martian dust. Originally, Christensen et al. (2001) thought TES data indicated 
the presence of basalt in the southern highlands and more silica-rich andesite in the northern 
plains. Wyatt and McSween (2002) argued that these more silica-rich spectral detections are 
actually weathered basalts with thin coatings of silica glass. Nevertheless, TES may have 
revealed the presence of rare exposures of granitoid rocks in the central uplifts of two adjacent 
craters (Bandfield et al. 2004) suggesting the presence of mechanisms that can produce highly 
differentiated magmas. 

OMEGA led the way in orbital visible – near infrared spectroscopic mineral discoveries 
on Mars with its typical 1-2 km pixel resolution. Detailed variations in Fe-pyroxene distribution 
were documented by Mustard et al. (2005). Gendrin et al. (2005) identified the monohydrated 
Mg-sulfate kieserite in layered deposits on the surface while gypsum-rich sand dunes were 
identified by Langevin et al. (2005) at circumpolar latitudes. Poulet et al. (2005) observed 
sparsely distributed phyllosilicates such as montmorillonite, Fe/Mg smectite, and nontronite 
consistent with an early stage of neutral to alkaline Martian hydrologic activity. Based on these 
and other mineral discoveries, Bibring et al. (2006) recognized several eras of mineralogic 
evolution on Mars: the “phyllocian” (~4.5 to 3.8 billion years ago) where aqueous alteration at 
more neutral pH formed phyllosilicates in the oldest terrain, the “theiikian” (~3.8 to 3.3 billion 
years ago) where sulfates were formed in a more acidic environment, and the “siderikian” (~3.3 
billion years ago to the present) where anhydrous ferric oxides formed from slow weathering 
primarily in the absence of liquid water. 

CRISM, the latest orbital visible-near infrared spectrometer to orbit Mars, is a pushbroom 
imaging spectrometer that has two data collection modes: a targeted hyperspectral mode that 
measures light from 0.36 to 3.92 mm over 544 spectral channels at a spatial resolution up to 
18 m per pixel, and a multispectral imaging mode that collects subsets (e.g., 72, 94, or 262) 
of its 544 channels at a spatial resolution of 100 to 200 m per pixel (Murchie et al. 2007). 
The hyperspectral mode produces full spatial resolution 10 × 10 km hourglass-shaped images 
with 18 m pixels or half spatial resolution 10 x 20 km images with 36 m pixels. In targeted 
mode, CRISM spectral sampling is approximately 6.5 nm. CRISM is gimbaled so it can swivel 
to perform continuous spectral measurements on a target while the spacecraft flies over the 
location. This allows higher spatial and spectral resolution measurements to be obtained with 
better signal-to-noise ratios. Gimbaling also allows acquisition of up to 11 images of the same 
target at varying emission angles during an overpass to facilitate separating surface absorptions 
from atmospheric ones. Recently, CRISM began acquiring targeted hyperspectral images with 
along-track overlap to produce images with 3-12 m pixel resolution over the most interesting 
areas (e.g., rover sites). 

CRISM data can be calibrated to apparent reflectance by first converting the data from 
instrument units to I/F (the ratio of the reflected intensity to the incident intensity of sunlight), 
next photometrically correcting it, then assuming Lambertian scattering applies, dividing it 
by the cosine of the incidence angle, and lastly correcting it for atmospheric gas absorptions 
by dividing by a scaled atmospheric transmission spectrum of Olympus Mons as explained 
in Mustard et al. (2008). Image noise can then be reduced using a filtering algorithm that 
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replaces outlier pixels in the spectral and spatial dimensions of the image cube (Parente 2008). 
Remaining noise is further reduced in each column by dividing individual pixel spectra by 
a spectral average calculated from pixels lacking narrow vibrational absorptions from that 
column. Alternatively, a DISORT-based radiative transfer model can be used to convert I/F data 
to surface Lambert albedo resulting in spectra nearly free of atmospheric gas artifacts (McGuire 
et al. 2008). This last method is compute intensive so has been applied to only a select group 
of CRISM scenes.

CRISM has allowed planetary scientists to leverage its fine pixel resolution to identify, 
in unprecedented detail, an even broader array of carbonates, phyllosilicates, opaline silica, 
sulfates, and zeolites on the Martian surface. Ehlmann et al. (2008) identified Mg-carbonate in 
the Nili Fossae region formed by alteration of olivine by hydrothermal fluids or near-surface 
water that were not destroyed by more acidic conditions later in Martian history. A number of 
researchers (Murchie et al. 2009; Mustard et al. 2008; Bishop et al. 2008; Noe Dobrea et al. 
2010) have noted that extensive phyllosilicate-rich layers, in some cases hundreds of meters 
thick, blanket old eroded highland areas. At the highest spatial resolution, these layers resolve 
in places into a lowermost Fe/Mg-smectite unit, a middle montmorillonite unit, and an upper 
kaolinite-rich unit suggestive of a weathering profile as conditions became more acidic with 
time. Curiosity, the Science Laboratory rover, successfully landed in and has begun exploring 
Gale Crater where CRISM has identified diverse phyllosilicate and sulfate mineralogy in a 5 
km high pile of layered rocks believed to have recorded climatic conditions during the first 
billion years of Martian history (Milliken et al. 2010). Gale crater is 152 km in diameter and is 
just 5º south of the equator. Stratigraphic exposure in the central mound is more than twice that 
of the Earth’s Grand Canyon (Thomson et al. 2011). The rover will traverse the central mound 
examining the lowermost section and then upper portion to determine if these sediments record 
the progressive “drying out” of Mars.

Ehlmann et al. (2009) summarizes spectral evidence for nontronite, Mg-rich smectite, 
chlorite, prehnite, serpentine, kaolinite, K-mica, opaline silica, Mg-carbonate, and the Na-
zeolite analcime in and around the Nili Fossae region. They suggest these minerals may indicate 
that low-grade metamorphism or hydrothermal aqueous alteration has occurred in this region in 
the past. Milliken et al. (2008) identified opaline silica on Mars based on CRISM spectra that 
were initially confused with the Al-rich smectite montmorillonite. Under terrestrial conditions 
opal has a broader 2.2-mm absorption compared to that of montmorillonite (Fig. 8). But under 
simulated Martian conditions weakly hydrogen bonded water normally present under relatively 
humid terrestrial conditions is lost causing the 2.2-mm absorption to narrow so it forms a better 
spectral match to CRISM spectra of widespread Martian surface rocks. Ehlmann et al. (2011) 
argue that spectroscopic evidence of minerals from assemblages formed under anoxic high 
temperature conditions, a high ratio of primary to secondary minerals, and observed stratigraphic 
relations indicate substantial amounts of clay formed by hydrothermal groundwater circulation 
and that cold, arid conditions with only transient surface water existed at the surface since the 
early Noachian period nearly 4 billion years ago. This explanation diminishes the need for an 
atmosphere thick enough to support persistent liquid water and clay formation by near-surface 
weathering (Bibring et al. 2006; Ehlmann et al. 2011).

Sulfate deposits on Mars are similarly detectable. Bishop et al. (2009) identified 
szomolnokite, a monohydrated Fe-sulfate in light-toned mounds within Valles Marineris and 
hydrated silica with hydroxylated ferric sulfate on the surround plateau. Lichtenberg et al. 
(2010) noted that a wide expanse of hydroxylated ferric sulfate underlies what is probably 
a layer of szomolnokite deposited as part of an evaporitic sequence in Arma Chaos. Several 
workers (Farrand et al. 2009, Milliken et al. 2008) have identified the yellow Fe-sulfate 
hydroxide jarosite in areas where water may have been present. Wray et al. (2011) used CRISM 
to map the distribution of a bathtub-ring of sulfates (i.e., gypsum, poly- and mono-hydrated 
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Mg/Fe sulfates, and jarosite) and phyllosilicates (i.e., kaolinite, montmorillonite, and Fe/
Mg-smectites) deposited as an evaporative scum by the receding waters of 900-meter deep 
paleolake that once partially filled Columbus Crater. Swayze et al. (2008) identified K-alunite 
in light toned layers on the floor of Cross Crater in the southern highlands in association with 
kaolinite, montmorillonite, and opal (Fig. 9). These minerals form partially concentric zones 
with alunite at the core suggestive of terrestrial relict acid-sulfate hydrothermal deposits. The 
relatively low-temperature (<100 °C) spectral signature of the alunite and its presence at the 
foot of the crater wall suggest it may have formed by precipitation in hydrothermal springs 
where acidic-water discharged into a lake that filled the crater to several hundred meters depth. 
Deposits in this crater and those in Columbus Crater would be excellent sites for future rover 
missions looking for evidence of past life.

As a general rule, the relative timing of phyllosilicate and sulfate deposition on Mars 
appears to be controlled by a progressively drying climate. Thollot et al. (2012) have found an 
exception, where a closed depression in the Noctis Labyrinthus region of Mars holds several 
hundred meters of stratified material enriched in phyllosilicates and sulfates, and both formed 
in situ during the Late-Hesperian epoch (3.4 to 3.0 billion years ago) after the Noachian period 

Figure 8. Laboratory spectra of montmorillonite and an opaline coating on a 3,000-5,000 year old basalt 
from Mauna Loa, Hawaii, at terrestrial conditions and simulated Martian surface conditions compared with 
an average of 120 spectra from MRO CRISM scene HRL000044AC collected over the plains around Valles 
Marineris south of Melas Chasma. Artifacts due to CO2 have been replaced by the dashed line to facilitate 
spectral comparison. Box encloses CRISM spectrum and lab mineral spectra measured at simulated Martian 
conditions. Figure modified from Swayze et al. (2007).
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(4.1 to 3.8 billion years ago) when most phyllosilicates are thought to have formed. Their 
evidence suggests that the broadly diverse mineral assemblages formed from local volcanic 
activity and related hydrothermal alteration, and that geological setting may be just as important 
as geological timing when trying to understand orbitally detected mineral deposits. 

Mars has seasonal and remnant polar caps of H2O and CO2 ices, as well as permafrost 
and geologic features indicative of glacial flow and sublimation of water ice from below the 
surface. Mars’ seasonal polar caps extend down to about 50° latitude (e.g., James et al. 1993 
and references therein). Due to present day obliquity, the southern hemisphere is drier than the 
northern hemisphere. The southern residual cap is dominated by CO2 ice while the northern 
residual cap is dominated by H2O ice (Farmer et al. 1976; Kieffer et al. 1976). However, it has 
recently been confirmed that an H2O cap underlies the southern CO2 remnant cap (Byrne and 
Ingersoll 2003; Bibring et al. 2004b).

More than 25% of the atmospheric CO2 condenses each year to form the seasonal 
caps (Forget et al. 1995; Kieffer and Titus 2001). The NASA Phoenix lander and Mars 
Reconnaissance Orbiter, Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), 
and the High-Resolution Imaging Science Experiment (HIRIS) instruments have quantified 
growth of the northern seasonal polar cap of H2O and CO2 at 68° N latitude (e.g., Cull et al. 
2010; Fig. 10). During winter, the CO2 ice grows to a depth of about 0.35 m with a thin layer 
of H2O ice on the surface.

Asteroids and comets 

Although asteroids generally show only silicate minerals on their surfaces, ice has been 
reported in two asteroids, 24 Themis (Rivkin and Emery 2008; Campins et al. 2009) and (65) 
Cybele (Licandro et al. 2011). Both objects have a weak absorption at 3-mm best described 

Figure 9. CRISM spectra of light-toned layered units on the floor of the 65 km diameter late Noachian 
Cross Crater in the southern highlands of Mars. Spectra were extracted from CRISM scene FRT0000987B; 
number of pixel spectra averaged listed at left end of each spectrum. Vertical lines mark position of diag-
nostic absorptions used to identify mineral phases and their mixtures. Wxl = well crystalline; Al-mont. = 
Al-montmorillonite. Figure modified from Swayze et al. (2008).
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by water ice. However, strongly hydrogen bonded water can also display absorptions at the 
wavelengths where ice absorbs and higher signal-to-noise ratio spectra are needed to confirm 
this weak absorption. In addition, Themis has been reported to contain organic material 
(Campins et al. 2010; Rivkin and Emery 2010). 

Comets are dark, with reflectances of only a few percent, and their surfaces are commonly 
thought of as carbonaceous lag deposits, the refractory remains left behind by the sublimation of 
dirty ice. While water is the major volatile species on comets, detection of water on the surface 
has been elusive. Davies et al. (1997) detected weak absorptions attributed to water ice in comet 
Hale-Bopp but the spectra included the coma. They also showed possible evidence for the ice 
being amorphous, but the low signal-to-noise ratio and weak absorption strength precludes a 
definitive detection when considering the far infrared spectrum of amorphous versus crystalline 
ice. Lellouch et al. (1998) also reported detection of ice in the coma of Comet Hale-Bopp. The 
temperatures they derived, 170 K, for their observations are too high for amorphous ice. A 
detection of ice on a comet nucleus without interference from the coma, comet Tempel 1, was 
reported by Sunshine et al. (2006) using the Deep Impact spacecraft where small exposures of 
ice were seen by the imaging spectrometer. The Deep Impact extended mission shows isolated 
patches of water ice on Comet Hartley 2 (Sunshine et al. 2012). While water ice has been 
detected on comets, to date, no other ices have been definitively detected via spectroscopy. 

Jupiter system

Jupiter has four large moons, discovered 400 years ago by Galileo, and three of these 
(Europa, Ganymede, and Callisto) were found to have water ice surfaces (Kuiper 1957; 
Moroz 1965; Johnson and McCord 1971; Pilcher et al. 1972; Fink et al. 1973). Over the years 
these bodies have been studied using airborne (telescopes on terrestrial aircraft looking up) 
and ground-based spectroscopy using telescopes (Pollack et al. 1978; Clark 1980; Clark and 
McCord 1980), by infrared spectroscopy from the Galileo spacecraft in orbit around Jupiter 
(Fig. 11), and from the New Horizons flyby of the Jovian system (Grundy et al. 2007). While 
no water ice was found on the innermost of the Galilean satellites – Io –sulfur dioxide ice was 
identified by (Fanale et al. 1979; Hapke 1979; Smythe et al. 1979) on the surface of this moon, 
the most volcanically active object in the solar system. The vigorous heating that powers Io’s 
volcanoes is the periodic solid-body tidal flexing arising from this moon’s orbital eccentricity. 
An important aspect of Jupiter’s satellites is the energetic radiation environment they suffer, far 

Figure 10. CRISM spectrum of the Mars Phoenix landing site (solid line) from orbit and model results 
(dotted lines) obtained at Ls~19.3°. Water ice dominates the spectrum with smaller amounts of CO2 ice. The 
horizontal axis is the wavelength in microns. From Cull et al. (2010).
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Figure 11. Reflectance spec-
tra of the Galilean Satellites. 
Geometric albedo spectra 
derived from ground-based 
and spaceborne instruments 
are shown top to bottom as 
a function of distance from 
Jupiter. Volcanic Io exhibits a 
rich infrared spectrum of SO2 
with possible but unidenti-
fied polysulfur oxide (PSO) 
absorption present. The blue 
edge of sulfur is evident along 
with a feature at 5 mm due to 
the S4 molecule. SO2 and pos-
sibly S8 absorptions are found 
in the ultraviolet region. Eu-
ropa has a leading (L)-trailing 
(T) side dichotomy so we 
distinguish these cases. SO2, 
polymeric sulfur, and likely 
S4 are present on the trail-
ing hemisphere along with 
a hydrate shown at infrared 
wavelengths by distorted wa-
ter bands. Nearly pure H2O 
is present on Europa’s lead-
ing side and there is less blue 
and ultraviolet absorption 
on that face compared to the 
sulfurous trailing side. Hy-
drogen peroxide and carbon 
dioxide are also apparent in 
Europa’s infrared spectrum. 
Ganymede has less exposed 
ice and the geometric albedo 
is lower due to broad non-ice 
absorption. Callisto is almost 
completely covered with dark 
non-ice compounds and both 
Callisto and Ganymede show 
spectral features possibly due 
to a hydrosulfide or carbonic 
acid, possibly SO2, and po-
tentially a CN compound. 
Trapped O2 is present on all 
three of the icy satellites. The 
Galileo ultraviolet spectrom-
eter data shown for Callisto 
and Ganymede were kindly 
provided by A. Hendrix and 
here normalized to the geo-
metric albedos derived by 
Nelson and Hapke. Data from 
Clark and McCord (1980), 
Nelson et al. (1987), Noll 
et al. (1995), Spencer et al. 
(1995), Hendrix et al. (1999), 
Jessup et al. (2002), Geissler 
et al. (2004), and Hendrix and 
Johnson (2008).
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more powerful than elsewhere in the solar system. Consequently, the surfaces of these bodies, 
and particularly that of Io and Europa, will experience modification by radiation chemistry (see 
review by Johnson et al. 2004).

Gravity data show that Io is a differentiated silicate body with an Fe or Fe + FeS core, 
whereas the outer three Galilean moons contain significant water ice, with increasing H2O 
content as one moves outward from Jupiter. Europa is differentiated and may have an internal 
structure similar to Io’s but with an overlying 100-200 km H2O mantle that comprises 10% 
of the satellite’s mass. This H2O cover is thought to consist of a 2-20 km icy crust covering 
an ocean of up to 100 km thickness. As in the case of Io, tidal flexing provides the heat to 
sustain a liquid ocean which is likely in contact with the rocky mantle. Ganymede, the largest 
satellite in the solar system and larger than Mercury, has more water than Europa, contributing 
to approximately half of the satellite’s mass. An outer icy crust and mantle, about 200 km thick, 
is thought to cover an ocean that is sandwiched between layers of high-pressure ice in different 
phases. Beneath the H2O mantle is a differentiated rocky body with a Fe-containing liquid core 
acting as a magnetic dynamo. Callisto is less differentiated than its sibling satellites, but has 
about the same relative water content and likely an ocean also, based on Galileo magnetic field 
data. However, due to their distance from Jupiter, tidal heating is much less efficient for these 
outer two satellites compared to Io and Europa.

In the following paragraphs we discuss the ice (SO2 and H2O) and non-ice surface 
compositions of Jupiter’s Galilean satellites. General reviews can be found in recent publications 
(Bagenal et al. 2004; Lopes and Spencer 2007; Pappalardo et al. 2009; Dalton et al. 2010; Clark 
et al. 2013). Io and Europa’s surface compositions are reviewed in Carlson et al. (2007) and 
Carlson et al. (2009), respectively. 

Io. Io is the innermost of the four Galilean satellites and exhibits a young, volcanically 
active surface that is rapidly resurfaced at an average rate of about one cm per year. The surface 
is nearly completely covered by sulfur dioxide ice and elemental sulfur, the exceptions being 
in the hot volcanic areas and fresh lava flows where silicates may be exposed. Gaseous SO2 is 
a volcanic effluent, derived from the degassing of hot magma, and is the dominant volcanic gas 
component, accompanied by minor amounts of SO and S2 (Zolotov and Fegley 1998, 1999, 
2000; Spencer et al. 2000) and other species such as NaCl (Lellouch et al. 2003), identified 
and mapped through ground-based microwave spectroscopy. SO2 contributes nearly all of the 
absorption features in Io’s spectra (Fanale et al. 1979; Hapke 1979; Smythe et al. 1979; Schmitt 
et al. 1994; Nash and Betts 1995; Carlson et al. 1997). The global abundance and grain sizes of 
the SO2 particles indicate that optically thick SO2 deposits of mm-size grains are concentrated 
in Io’s equatorial regions (Carlson et al. 1997; Laver and de Pater 2008; 2009) and confirm 
earlier measurements of (McEwen 1988), who studied Io’s surface using ultraviolet and visible 
Voyager images. These equatorial deposits are strongly associated with active volcanoes and 
arise from volcanic venting of gaseous SO2 into the plumes and atmosphere with subsequent 
deposition onto colder surfaces as frost. The relatively large grain sizes indicate sublimation and 
condensation metamorphism for these deposits. 

In contrast, fine grained SO2 frost was found at mid-and high-latitudes (Carlson et al. 1997; 
Doute et al. 2001; Laver and de Pater 2008, 2009). SO2 frost sublimates during the day due 
to relatively high surface temperatures. Although most of it re-condenses locally during the 
nighttime, SO2 molecules slowly migrate toward higher latitudes and colder regions (Matson 
and Nash 1983). The high-latitude SO2 deposits appear transparent under normal-incidence 
illumination and therefore are thought to be optically thin (Geissler et al. 2001). They tend to 
remain as small grains as originally condensed because of the colder environment and rapid 
radiolytic destruction of the SO2 grains at higher latitudes (Wong and Johnson 1996). The poles 
of Io appear red due to the radiolytic destruction of SO2 and the production of elemental sulfur. 
The possible condensation of SO2 during the ~2.5 hour eclipses of Io by Jupiter during each 
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orbit has long been a subject of interest; see the recent review and time-resolved infrared spectra 
of Io at eclipse reappearance (Cruikshank et al. 2010a).

Sulfur dioxide is a thermochemical product of hot magmas and its presence is indicative 
of volcanic conditions. The ratios of SO and S2 to SO2 in the volcanic plumes are consistent 
with high-temperature volcanism in a silicate mantle that is deficient in Fe-metal (Zolotov and 
Fegley 2000). Being a high-temperature chemical product, SO2 probably represents a very 
minor contribution to the satellites total mass. However, since it is a very volatile, it is likely 
that most of Io’s SO2 is at or near the surface. The solid and gaseous forms of SO2 are evident 
in the surficial ices and the overlying sublimational and plume-derived atmosphere, but there is 
evidence that liquid SO2 forms a near-surface “aquifer.” Scarps and sapping channels provide 
one line of evidence (McCauley et al. 1979; McEwen et al. 2000; Moore et al. 2001) and 
uniform topographic infilling of a crater by SO2 (Lopes et al. 2001) provides further evidence 
for SO2 “ground water” (Fig. 12). It has been estimated that the upper 1 km of Io is rich in the 
volatiles SO2 and sulfur (McEwen et al. 2000).

Io is intensely irradiated by Jupiter’s magnetosphere, forming sulfur trioxide. The signature 
of SO3, as well as S8 and SO2, may be present in thermal emission spectra of Io (Khanna 
et al. 1995; Hanel et al. 2003). A related species, disulfur monoxide (S2O), was investigated 
by (Baklouti et al. 2008) but interference by strong SO2 bands precluded its observation. 
Polysulfur oxides (PSO) may be present on Io and produce a broad absorption in the 4.5-mm 
region (Baklouti et al. 2008). Ion irradiation can also sputter surface atoms and molecules into 
an atmosphere around Io and into escape orbits. Neutral and ionized toroidal clouds are formed 
around Jupiter and provide a source of sulfur, oxygen, sodium, potassium, chlorine, and other 
possible species to other satellites. This is particularly important for Europa, where the tori 
strike the trailing hemisphere and provide a source of sulfur and other elements. 

Sulfur on Io is emplaced on the surface by volcanic plumes, primarily as S2, while sulfur 
volcanism may occur on Io and produce sulfur lava flows. Elemental sulfur can exist in a variety 
of forms (linear chains, cyclic) and with innumerable lengths. The most stable form is cyclo-
octal and some of Io’s sulfur is likely in this form, the remaining being polymeric with some 
tetrasulfur S4 (Fig. 11, top panel). 

Figure 12. The interior of a volcanic caldera near Chaac (indicated by arrow) on the Galilean moon Io is 
filled with spectroscopically identified very pure SO2 that appears white and to be topographically controlled 
inflows of liquid SO2. 
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The high temperatures of Io’s volcanoes, up to 1700 K, indicate silicate volcanism but 
the rapid resurfacing by plume and sublimated SO2 has precluded definitive identifications of 
silicates on the surface. Geissler et al. (1999) found a region on Io with an absorption at 0.9 mm 
and suggested that it was caused by a ferrous iron feature present in Fe-containing magnesian 
orthopyroxenes. This is a plausible suggestion as such minerals are associated with the most 
primitive terrestrial rocks and possess a high melting temperature. 

Europa. Europa orbits Jupiter at about 1.6 times the distance from Jupiter as Io and is the 
innermost of the water-ice-containing Galilean satellites. Although it contains less bulk H2O 
than Ganymede or Callisto, the surface exhibits much more exposed water ice and hydrate than 
the other H2O-icy Galileans due to its greater surface activity, a consequence of tidal heating 
(the crater age is a mere 50 My as reported by Zahnle et al. 2003). The leading hemisphere 
of Europa, in the sense of orbital motion, presents the purest ice as determined by infrared 
spectroscopy which probes the upper sub-millimeter depths of the surficial materials. Both 
amorphous and crystalline ice are present, with a greater proportion being the amorphous form 
(Hansen and McCord 2004). The presence of amorphous and crystalline phases are the result 
of two competing processes—the increase in disorder and amorphization of ice crystals by 
energetic particle bombardment, and thermally-induced phase transformation of amorphous ice 
to the lower energy cubic ice form or the even lower energy hexagonal ice phase. 

The second major constituent on Europa is a hydrated species, predominant on the 
trailing side and associated with the dark material that produces Europa’s hemispherical color 
dichotomy—the red, trailing hemisphere and the whiter, leading hemisphere. This icy hydrate 
is a complex of some molecule X (or groups of molecules) surrounded by hydration shells of 
water, often in stoichiometric proportions, as Xn·mH2O. One suggested source of this hydrate is 
a salty subsurface ocean, the X being a salt such as MgSO4, forming hydrates such as epsomite 
MgSO4·7H2O and others (McCord et al. 1998b, 1999). A second hypothesis is that radiolysis 
of exogenic (Iogenic) sulfur implanted on Europa’s trailing hemisphere produces hydrated 
sulfuric acid (Carlson et al. 1999b, 2002, 2005). The associated dark material is thought to be 
polymeric sulfur (Carlson et al. 1999b) since most salts and acids are colorless in the visible 
spectral region. The association of hydrate and dark material with geological features on the 
trailing side implies an endogenic process, either emplacement of material from the subsurface 
ocean or thermal modification of exogenically-derived material, forming lag deposits. Many 
hydrated salts exhibit spectral features in the infrared (Dalton et al. 2005; Clark et al. 2007). 
A linear (areal) mixing model has recently been applied and used to infer composition and 
variations across Europa’s surface (Shirley et al. 2010; Dalton et al. 2012, 2013; Cassidy et al. 
2013). The model used many hydrated materials in the fitting, each with a constant grain size, 
and with areal rather than intimate mixing. Since spectral characteristics are strongly grain-size 
dependent, the uniqueness of the solutions and identifications must be viewed with caution. 
Suggestive evidence for the presence of epsomite (MgSO4·7H2O), based on a characteristic 2.07-
mm feature, has been found recently by (Brown and Hand 2013). They suggest emplacement of 
Mg2+ and other cations from Europa’s ocean as chlorides and subsequent radiolysis (see below) 
with H2O ice and exogenic sulfur to produce sulfate salts. However, models with significant 
salt, like those proposed above, are incompatible with Europa’s 3-mm to 5-mm spectrum, which 
is very dark compared to salts (e.g., see salt spectra in Clark et al. 2007). Future models and 
interpretations need to include intimate mixtures and the full spectral range of data available 
for Europa.

The magnetospheric environment at the orbit of Europa is almost as damaging as at Io, and 
several radiolytic species are observed. As mentioned above, native sulfur exists on the surface 
and is radiolyzed to the polymeric form and as the red chromophore tetrasulfur (Carlson et 
al 2009; Hand and Brown 2013). Molecular oxygen is found on Europa (Spencer and Calvin 
2002), and is radiolytically formed and trapped in H2O ice, as is hydrogen peroxide H2O2 
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(Carlson et al. 1999a). SO2 is observed and is a radiolytic product of sulfate decomposition 
(Johnson et al. 2004; Carlson et al. 2009; Hendrix et al. 2011). CO2 is also found (Smythe et 
al. 1998; Hand et al. 2007; Hansen and McCord 2008) and this ubiquitous molecule could be 
from endogenic or exogenic sources (see discussions below). These minor species may exist in 
Europa’s near surface as mixed clathrate hydrates (Hand et al. 2006). 

Ganymede. Ganymede is also a differentiated body, but is unique because it has an intrinsic 
magnetic field arising from dynamo motions within a molten iron core. Ganymede and Callisto 
contain more ice than Europa, but both exhibit darker, less icy surfaces than does Europa. The 
major source of this dark material is probably the direct infall of meteoritic material and from 
impact debris ejected from Jupiter’s more plentiful but smaller outer satellites. This process 
should also occur on Europa, but Europa’s vigorous current or recent surface activity has diluted 
and buried the meteoritic material within the ice shell. 

Ganymede’s surface has roughly equal proportions of amorphous and crystalline ice 
(Hansen and McCord 2004); the small proportion of amorphous ice compared to Europa is 
presumably due to the lower incident flux of high-energy magnetospheric radiation and 
shielding by Ganymede’s magnetic field. Bright, icy polar caps are observed on this satellite 
and the boundary between the icy polar regions and the less icy lower latitudes closely coincides 
with the transition from open to closed magnetic field lines. This suggests surface brightening 
by energetic magnetospheric particles streaming in on open field lines and striking Ganymede’s 
polar surfaces. This brightening may be produced by ice grain disruption (Johnson 1997), 
creating smaller grains and more scattering sites, which decreases the absorption and increases 
the albedo, or by sputtering and thermal segregation (Khurana et al. 2007). 

A hydrate, possibly similar to Europa’s, has been identified on Ganymede and suggested 
to have been formed from MgSO4-rich brine emplaced from the ocean below (McCord et al. 
2001). Ganymede once had an active surface but any such emplacement must have occurred 
in the distant past since the surface age is ~ 2Gy (Zahnle et al. 2003). With subsequent 
meteoritic infall and gardening, it is unclear how these salt minerals could be present in the high 
concentrations that were observed. The geological process that erupts material from a 200-km 
deep ocean is also unclear. A second class of hydrate, associated with dark crater rays, has been 
identified by Hibbits and Hansen (2007) and found to be similar to C-type asteroid or Callisto 
non-ice materials. This hydrate may be material from, or modified by, the impactor. 

Three water-related radiolytic species are found on Ganymede: molecular oxygen (Spencer 
et al. 1995; Calvin et al. 1996), ozone (Noll et al. 1996; Hendrix et al. 1999a), and possibly 
hydrogen peroxide (Hendrix et al. 1999b). Transient, localized SO2 concentrations have been 
suggested (Domingue et al. 1998) and spectral information indicates the presence of other 
species. Since these features are similar to those found in spectra of Callisto, they are described 
in the following section. 

Callisto. Callisto, the outermost icy Galilean satellite, has a bulk composition that is about 
half H2O and half rocky silicates. In contrast to the inner three Galilean satellites, Callisto is only 
partly differentiated, with denser rocky components that slowly settled, or are currently settling, 
to the center (Schubert et al. 2004). The lack of tidal heating and the low rate of gravitational 
settling may not provide sufficient energy to cause geological activity on the surface. Callisto 
has a very old surface, mostly covered with a layer of dark material, presumably from meteoritic 
infall and outer satellite-derived ejecta material. Both impact cratering and mass wasting 
have exposed the icy “bedrock” over approximately 10% of this ancient surface, showing the 
presence of water ice that is predominantly crystalline with grain sizes (diameters) of ~ 200-
400 mm (Hansen and McCord 2004). Water molecules tend to segregate by sublimation and 
condensation on cold, bright ice surfaces, but the dark material also has an H2O component, 
probably including adsorbed H2O. Because the temperatures attained by the dark material are 
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high (~ 150-160 K), some of these water molecules sublimate during the day and re-condense 
at night, so thermal segregation is not complete. The radiolysis product O2 has been observed 
on Callisto (Spencer and Calvin 2002) and H2O2 has been suggested (Hendrix et al. 1999b). 

NH3 has not been observed on the surface, but CO2 is found on the surfaces of Callisto and 
Ganymede (Carlson et al. 1996; McCord et al. 1997; McCord et al. 1998a; Hibbitts et al. 2000, 
2002, 2003) as well as on Europa as noted above. A tenuous CO2 atmosphere has also been 
found on Callisto, indicating loss from the surface. The surficial CO2 is not an ice, based on the 
spectral position of the absorption feature, and CO2 ice is too volatile to be stable at Galilean 
satellite temperatures; instead the molecules appear to be trapped in the dark material. The 
source of CO2 could be degassing from the interior (Moore et al. 1999) or an exogenic source 
or production mechanism. SO2 has been suggested as a surface component based on ultraviolet 
(Lane and Domingue 1997; Noll et al. 1997) and infrared spectra (McCord et al. 1997, 1998a; 
Hibbitts et al. 2000). SO2 is also quite volatile, and cannot exist as a direct condensate but 
could be trapped similar to CO2. Hendrix and Johnson (2008) have questioned the ultraviolet 
SO2 identification and interpreted Galileo ultraviolet spectra as absorption by carbonized 
organics. The radiolysis of organics in ice by energetic electrons as would occur in the Jovian 
magnetosphere does produce trapped CO2 (Hand and Carlson 2012). Infrared evidence for the 
presence of aliphatic hydrocarbons has been suggested by (McCord et al. 1997, 1998a). Two 
other spectral features have been identified on both Callisto and Ganymede, one at 3.88 mm 
and thought to be due to a hydrosulfide compound (-SH) (McCord et al. 1997, 1998a) or the 
CO2-related compound, carbonic acid (H2CO3) (Hage et al. 1998). Another common feature for 
these two satellites occurs at 4.57 mm and is possibly due to a –CN-containing tholin (McCord 
et al. 1997, 1998a). 

Saturn system

It has long been known that the surfaces of Saturn’s rings and major satellites, Mimas, 
Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus, and Phoebe are predominantly icy objects 
(e.g., Fink et al. 1975; Clark et al. 1984, 1986, 2005, 2008a; Roush et al. 1995; Cruikshank et 
al. 1998a, 2005; Grundy et al. 1999; Owen et al. 2001; Filacchione et al. 2007, 2008; Cuzzi 
et al. 2009). Whereas the reflectance spectra of these objects (Figs. 13-16) in the visible range 
indicate that a coloring agent is present on all surfaces, only Phoebe and the dark hemisphere 
of Iapetus display spectra markedly different from very pure water ice (e.g., Cruikshank et al. 
2005; Clark et al. 2005, 2012; Jaumann et al. 2009 and references therein). The relative purity 
of the ice in Saturn’s satellites and rings may be the result of a singular catastrophic event (e.g., 
Canup 2010; Asphaug and Reufer 2013).

Dark material was first inferred in the Saturn system by J. D. Cassini (1672), and verified 
by Murphy et al. (1972) and Zellner (1972). The nature of the dark material has been studied by 
numerous authors, sometimes with conflicting conclusions, including Cruikshank et al. (1983), 
Vilas et al. (1996), Jarvis et al. (2000), Owen et al. (2001), Buratti et al. (2002), and Villas et 
al. (2004). The new Cassini VIMS data provide a greater spectral range (0.35 to 5.1 mm in 
352 wavelength channels) in reflected solar radiation, with higher precision, and show new 
absorption features not previously seen in these bodies (e.g., Buratti et al. 2005; Clark et al. 
2005, 2008a, 2012; Cruikshank et al. 2007, 2008). These new VIMS observations also spatially 
resolve the satellite surfaces enabling maps of compounds to be made, leading to additional 
insights into the nature of the icy satellite surfaces. The spatial resolution of derived maps of 
materials from VIMS data is variable depending on fly-by distances, and ranges from tens of 
kilometers per pixel to sub kilometers per pixel.

The Cassini spacecraft entered the Saturn system in 2004, and the Visual and Infrared 
Mapping Spectrometer (VIMS) began obtaining spatially resolved spectra of Saturn’s satellites 
and rings (Brown et al. 2005a; Figs. 13-16). The VIMS has provided a wealth of spatially 
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resolved compositional data on the satellites (e.g., Phoebe: Clark et al. 2005; Iapetus: Buratti 
et al. 2005, Cruikshank et al. 2007, 2008; Enceladus: Brown et al. 2006; Jaumann et al. 2006; 
Dione: Clark et al. 2008a; Jaumann et al. 2009; Clark et al. 2012) and rings (e.g., Nicholson et 
al. 2008; Cuzzi et al. 2009). The satellites and rings are dominated by crystalline H2O ice with 
trace amounts of CO2 (Fig. 15) and dark material (e.g., Fig. 14 and Fig. 16 spectra B and C) 
although it is not clear if the CO2 is an ice, trapped, or both (Cruikshank et al. 2010b). Trace 

Figure 13. Cassini VIMS reflectance spectra of Saturn’s rings corrected for fill factor. The spectra are domi-
nated by absorptions from water ice and an UV absorber. Adapted from data in Cuzzi et al. (2009).

Figure 14. Spectra of bright and dark regions on Saturn’s satellite Dione. Inset shows weak CO2 observed 
in areas with dark material. From Clark et al. (2008a).
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organics and ammonia absorptions are seen in some satellites but again, it is not clear if the 
absorptions are due to ices or trapped molecules. Unusual colors and spectral shapes of the 
satellites and rings in the UV to visible are currently explained by a combination of Rayleigh 
scattering by small particles (ice grains as well as contaminants) and an UV absorber by one of 

Figure 15. CO2 on icy objects in the Saturn system detected by the absorption near 4.25 mm. No CO2 has 
been detected in spectra of the rings. CO2 absorption appears strongest on satellites with dark material. From 
Clark et al. (2008a).

Figure 16. Spectra of Iapetus, showing a sequence from regions of dark material (black spectrum) to higher 
concentrations of water ice (blue). From Clark et al. (2012). 
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the contaminants (Clark et al. 2008a,b, 2012; see reviews by Jaumann et al. 2009; Cuzzi et al. 
2009; Hendrix et al. 2012).

The surface composition of Titan is still enshrouded in a cloud of mystery despite the initial 
flood of data from the Cassini spacecraft and the Huygens probe. Although the composition of 
Titan’s atmosphere is known (Coustenis et al. 1999, 2003, 2005, 2006a,b, 2007; Flasar et al. 
2005; Teanby et al. 2009 and references therein), with most of the observed gases having been 
predicted using models of UV photolysis and reactions of atmospheric methane and nitrogen 
(Yung and DeMore 1999; Vuitton et al. 2008 and references therein), the many less volatile 
molecules that coat and/or make up the solid surface have yet to be identified. Tholins are the solid 
end products of photolysis and electron discharge experiments done in terrestrial laboratories 
with gases common in Titan’s atmosphere and are one type of mixture of compounds theorized 
to exist on Titan (e.g., Sagan et al. 1992; Imanaka et al. 2004; Quirico et al. 2008). Table 1b in 
Clark et al. (2010a) lists known solid compounds on Titan through 2009, and include benzene 
(firm), with many tentative or inferred compounds including ices of cyanoacetylene (HC3N), 
toluene (C7H8), cyanogen (C2N2), acetonitrile (CH3CN), H2O, CO2, and NH3. 

The Cassini RADAR has provided the highest spatial resolution images of Titan’s surface 
from Saturn orbit but is a mono-frequency system that provides compositional information only 
through the dielectric constant of the surface at its operating wavelength of 2.16 cm (Elachi et 
al. 2005). Only the Descent Imager-Spectral Radiometer, DISR, on the Huygens probe and 
VIMS from the Cassini Saturn orbiter have the capability to provide combined spectral plus 
spatial information about the surface (Tomasko et al. 2005; Schroeder and Keller 2008; Sotin 
et al. 2005; Barnes et al. 2005, 2007, 2008; McCord et al. 2006, 2008; Rodriguez et al. 2006; 
Brown et al. 2008; Nelson et al. 2009; Soderblom et al. 2009; Clark et al. 2010a). The DISR 
was limited in wavelength range out to 1.7 mm but obtained very high spatial resolution over a 
limited area during the descent of the Huygens probe; VIMS measures wavelengths out to 5.1 
mm (Fig. 17) and can cover large parts of the surface of Titan, but at much more limited spatial 
resolution (a few km /pixel are common and a few small areas have been spectrally imaged 

Figure 17. Reflectance spectra of Titan’s bright (red line) and dark (blue line) regions. The gray areas in the 
plot are regions of strong absorption from atmospheric methane through which the surface is not detected. 
From Clark et al. (2010a).
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at sub 300 meters). Terrestrially synthesized tholins do not match the spectral slope in data 
from the Huygens DISR (Tomasko et al. 2005; Schroeder and Keller 2008) or Cassini VIMS 
(McCord et al. 2006). The DISR spectra of Titan’s surface show a blue spectral slope from 1 to 
1.6 mm that is distinctly “un-tholin” like and show what qualitatively appears to be a water-ice 
absorption, but the complete H2O feature was not covered by the spectrometer (Tomasko et 
al. 2005; Schroeder and Keller 2008). Schroeder and Keller concluded the absorption did not 
match water ice. Also, the 1.25-mm H2O absorption was not observed even though expected 
in the models presented by Tomasko et al. (2005) and Schroeder and Keller (2008). In situ 
analyses have detected methane, ethane, and tentatively identified cyanogen, benzene, and 
carbon dioxide on the surface from the Huygens GCMS (Niemann et al. 2005). Ammonia and 
hydrogen cyanide were the main pyrolysis products of the aerosols measured by the Huygens 
in situ pyrolysis experiment during its descent (Israel et al. 2005) and those aerosols could rain 
down to the surface, but pyrolysis products are not necessarily compounds in the aerosols. 
Higher in Titan’s thermosphere, benzene was first detected in the stratosphere by ISO and CIRS 
(Coustenis et al. 2003, 2007), and the Cassini Ion and Neutral Mass Spectrometer (INMS) 
instrument has detected high abundances of benzene along with toluene above 900 km (Waite et 
al. 2007). Toluene is an interesting molecule after benzene because toluene consists of a benzene 
ring with a methyl functional group, -CH3, replacing one of the hydrogen atoms attached to the 
benzene ring. Toluene is a possible larger organic molecule that may be compatible with VIMS 
surface spectra of Titan.

Clark et al. (2010a) presented evidence for surface deposits of solid benzene, (C6H6) 
(Fig. 18), solid and/or liquid ethane, (C2H6), or methane (CH4), and clouds of hydrogen 
cyanide (HCN) aerosols using diagnostic spectral features in data from the Cassini VIMS. 
Cyanoacetylene (2-propynenitrile, HC3N) is indicated in spectra of some bright regions, but 
the spectral resolution of VIMS is insufficient to make a unique identification although it is 
a closer match to the feature previously attributed to CO2. Acetylene (C2H2), expected to be 
more abundant than benzene on Titan according to some models, was not detected. Water ice, 
if present, must be covered with organic compounds to the depth probed by 1-mm to 5-mm 
wavelength photons: a few millimeters to centimeters. While many organic compounds have 
now been detected in the atmosphere and on Titan’s surface, we still have only a small spectral 
database of solid organic compounds measured at Titan temperatures (about 92 K) to compare 
with spectra of Titan. Spectra of additional compounds are needed, along with higher spatial and 

Figure 18. Spectra of Titan showing an absorption attributed to benzene ice. From Clark et al. (2010a).
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spectral resolution data of Titan’s surface in order to better understand the full compositional 
range of compounds there.

Saturn’s moon Titan has a close analogy to Earth’s hydrologic cycle where instead of liquid 
water, methane and ethane exist as liquids at the surface. Similar to liquid water lakes and 
rivers on the Earth, Titan has liquid methane and ethane lakes and rivers in a currently active 
methanologic cycle. These two bodies are unique in the Solar System in that regard.

Uranus system

The Uranus system was investigated by the Voyager II spacecraft in 1986, but that probe 
had no near-infrared spectral-imaging capability. Accordingly, compositional studies of the 
Uranian satellites and rings have relied on ground-based telescopic observations, progressing in 
parallel with advances in infrared instrumentation technology. Prior to the Voyager encounter, 
low spectral resolution (bandwidths ~2% of the wavelength) circular-variable filter (CVF) 
spectrophotometry led to detection of broad water ice absorptions at 1.5 and 2 mm on the five 
major satellites of Uranus: Miranda, Ariel, Umbriel, Titania, and Oberon (Cruikshank 1980; 
Cruikshank and Brown 1981; Soifer et al. 1981; Brown 1983; Brown and Clark 1984; Brown et 
al. 1991). Spectrometers based on infrared detector arrays enabled higher quality near-infrared 
spectra to be obtained (Fig. 19), with spectral bandwidths of around 0.1%, revealing the 1.65-mm 
water ice band on all five satellites, indicative of cold crystalline H2O ice (Grundy et al. 1999; 
Bauer et al. 2002). An apparent dip in Miranda’s spectrum near 2.2 mm has been tentatively 
attributed to ammonia ice (Bauer et al. 2002) but this identification has not yet been confirmed. 
Repeated observations of the other four satellites have shown no comparable 2.2-mm features, 
but did reveal the presence of a narrow triplet of CO2 ice absorptions near 2 mm on Ariel, 
Umbriel, and Titania, but not Oberon (Grundy et al. 2003, 2006). Interestingly, the strengths 
of these CO2 ice absorptions were found to be spatially variable, being strongest on the trailing 
hemispheres of the satellites, and also on the satellites closer to Uranus (whether or not Miranda 
fits this pattern remains to be tested). This spatial pattern is consistent with in situ production 

Figure 19. Reflectance spectra of the Uranian satellites showing strong water absorptions and narrow CO2 
absorptions. Note the asymmetric (toward longer wavelengths) 2-mm ice absorption of Oberon indicating 
the presence of sub-micron ice grains.
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of CO2 from local H2O plus carbonaceous materials driven by Uranian magnetosphere charged 
particle radiolysis, balanced by relatively rapid sublimation loss (Grundy et al. 2006). Water ice 
absorptions were seen to exhibit the opposite pattern, being deepest on the leading hemispheres 
of Ariel, Umbriel, and Titania (although perhaps not Oberon; Grundy et al. 2006). This pattern 
of deeper water ice absorptions on leading hemispheres is also seen in the Jovian and Saturnian 
satellite systems, but the cause remains uncertain. Possibilities include preferential gardening 
of icy regoliths by impactors impinging on leading hemispheres (Zahnle et al. 2003), and 
preferential sputtering removal of H2O ice via magnetospheric charged particle bombardment 
on trailing hemispheres (e.g., Cheng et al. 1986; Eviatar and Richardson 1986; Pospieszalska 
and Johnson 1989; Johnson 1990). No ices have been identified to date in spectra of the Uranian 
rings (e.g., Soifer et al. 1981; Pang and Nicholson 1984; Baines et al. 1998). The low albedos 
of Uranian satellites and ring particles implies the presence of a darkening agent, which has 
long been presumed to be carbonaceous in nature, although its precise composition remains 
unknown.

The Neptune system and beyond

The Neptune system was explored by Voyager 2 in 1989, providing a wealth of physical 
details. But, as with the Uranus system, almost all compositional information about ices in 
the Neptune system came from Earth-based observations. Neptune’s largest satellite, Triton, 
provides particularly interesting and complex examples of outer solar system ice geology. Early 
Triton results came from a series of near-infrared CVF spectrometer observations (~2% spectral 
resolution) during the 1970s and 1980s, leading to the discovery of methane, nitrogen, and 
water ice absorptions (Cruikshank and Silvaggio 1979; Apt et al. 1983; Cruikshank and Apt 
1984; Cruikshank et al. 1984, 1988, 1989; Rieke et al. 1985).

The advent of array spectrometers with cryogenic optics resulted in much higher quality 
spectra (Fig. 20), leading to the discovery of CO, CO2, and C2H6 ices (Cruikshank et al. 1993; 
Bohn et al. 1994; DeMeo et al. 2010). The higher spectral resolution and signal precision 
enabled by these instruments revealed subtle wavelength shifts in the methane bands consistent 

Figure 20. Near infrared spectra of Triton and Pluto are compared in this figure. Features arising from CH4, 
CO, CO2, H2O, and N2 are identified.
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with the CH4 molecules being dispersed in nitrogen ice (Cruikshank et al. 1993; Quirico et al. 
1999), a situation anticipated from thermodynamic arguments (Lunine and Stephenson 1985). 
They also revealed the phase of Triton’s water ice to be predominantly crystalline (Cruikshank 
et al. 2000; Grundy and Young 2004).

A picture of Triton emerged of a solar-powered, active world in which volatile N2, CO, and 
CH4 ices sublimate and condense in response to seasonal insolation on a substrate of H2O and 
CO2 ices (which are non-volatile at Triton surface temperatures), leading to an array of bizarre 
landforms and even jetting of sublimated nitrogen gas out of fissures, with possible aeolian 
transport of non-volatile H2O and CO2 ice dust (e.g., Brown et al. 1990; Hansen and Paige 
1992; Stansberry et al. 1996; Grundy et al. 2002). Evidence for short-term changes in the visible 
wavelength parts of Triton’s spectrum reinforced the perception of an active Triton (Hicks and 
Buratti 2004), as did the paucity of impact craters in Voyager images (Schenk and Zahnle 2007). 
To explain the large optical path-lengths required by the observed 2.15-mm N2 absorption 
band, Triton’s N2 ice could have an unusually compacted texture, perhaps more like a sintered 
slab than the usual particulate soils encountered on planetary surfaces (e.g., Eluszkiewicz 
1991; Grundy and Stansberry 2000). Based on seasonal models, latitudinal heterogeneity in 
the spatial distribution of Triton’s ices is expected, but time-resolved spectroscopy reveals a 
longitudinal heterogeneity as well (Grundy et al. 2010). The N2 and CO ices seem to co-occur, 
and to be much more abundant on Triton’s Neptune-facing hemisphere. Despite being mostly 
dissolved in N2 ice, Triton’s CH4 shows a very different longitudinal pattern, with its strongest 
absorption seen on Triton’s trailing hemisphere. The H2O and CO2 ice absorptions show little 
or no longitudinal variation, as if they are globally distributed, perhaps as wind-blown dust.

To date, H2O ice has only been detected on one other body in the Neptune system, the 
satellite Nereid (Brown et al. 1998, 1999). Little is known beyond photometric colors regarding 
compositions of Neptune’s other satellites and rings (e.g., Dumas et al. 2002).

Objects at Neptune’s heliocentric distance and beyond (the transneptunian region, also 
known as the Kuiper belt) have surface temperatures sufficiently low (<~50 K) for multiple ices 
to condense on their surfaces. The equilibrium temperature, Teq, of a solid body is a function of 
both the heliocentric distance (a) of the objects and their albedos, (q), following the relation Teq 
= 280 K ((1−q)/a2)1/4. For an object at 30 Astronomical Unitts (AU) with an albedo of 0.04 this 
gives Teq =50.6 K. Larger heliocentric distances, a, and/or higher geometric albedos, q, lead to 
even lower temperatures. For objects near condensation thresholds, there is a positive feedback 
favoring the stability of icy surfaces once the threshold for formation is met. The stability of 
ices is also a function of surface gravity and the ability of a body to limit atmospheric escape. 
Schaller and Brown (2007) have calculated the expected stability for CH4, N2 and CO ices in 
outer solar system bodies and find that objects with diameters below 1000-1500 km are not 
expected to have retained significant amounts of these ices on their surfaces. The handful of 
larger objects in the Kuiper Belt can retain these materials, and apparently have.

Methane ice was first detected as a solid in the solar system in an infrared spectrum of 
Pluto (Cruikshank et al. 1976). More recently, solid CH4 has been identified in the large Kuiper 
Belt Objects (KBO) Eris (Brown et al. 2005b), Sedna (Barucci et al. 2005), and Makemake 
(Licandro et al. 2006), as reviewed by de Bergh et al. (2013). The signal-to-noise ratio and 
wavelength coverage of spectra of small outer solar system objects have steadily improved.

For Pluto in particular, high signal-to-noise ratio spectra show that it shares many spectral 
features with Triton (Fig. 20) including multiple discrete features of CH4, although the two 
clusters of features due to CO2 ice in Triton’s spectrum are absent from Pluto’s spectrum. The 
quality and detail of the spectra allow for detailed analyses comparing band strengths and posi-
tions to constrain the detailed physical state of the ices on the surface. As with Triton, the beta 
N2 2-0 absorption is interpreted as arising from optical path lengths in beta N2 ice of the order 
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of many centimeters, implying unusually coarse particle sizes or perhaps a sintered glaze of N2 
ice, as noted above (e.g., Eluszkiewicz 1991; Grundy and Stansberry 2000). The existence of 
the ~2.16-mm side band in spectra of both Pluto and Triton has been used to place upper limits 
on the temperature of N2 ice on those bodies (Grundy et al. 1993; Tryka et al. 1993, 1994). 

Even without directly detecting its absorption bands, it may be possible to infer the presence 
of N2 ice from its effect on absorptions from other species. For instance, when CH4 is dispersed 
in N2 ice, the much stronger CH4 bands are shifted to slightly shorter wavelengths (Quirico and 
Schmitt 1997a), an effect which has been reported in spectra of Eris and Makemake, in addition 
to Pluto and Triton. Unfortunately, details of how the distinct CH4 bands shift depend on the 
relative concentrations of N2 and CH4 are not yet fully understood (e.g., Brunetto et al. 2008; 
Cornelison et al. 2008), and the uniqueness of N2 in its ability to shift CH4 absorption bands has 
yet to be established. For instance, Tegler et al. (2010) report that dilution of CH4 in argon ice 
produces similar shifts.

Pluto shows evidence for time-varying albedo features on its surface (Buie et al. 2010). 
Seasonal effects are expected to result in redistribution of surface ices over time. Grundy et al. 
(2013) have recently shown what appears to be seasonal evolution of features on Pluto over a 
decade of observation. Differing longitudinal variations of CH4 and N2 ices suggest that these 
two ices may be physically segregated on the surface. In contrast, CO and N2 vary together with 
longitude, implying they are intimately mixed. Ethane ice has also been reported in spectra of 
Pluto, notably using bands at 2.27, 2.405, 2.457, and 2.461 mm (DeMeo et al. 2010), where it 
presumably forms through radiolysis and or photolysis of CH4 (Moore and Hudson 2003).

Water ice has been detected on numerous Kuiper belt objects and Centaurs, both small 
and large (e.g., Dotto et al. 2003; Barkume et al. 2008; Guilbert et al. 2009). However, it seems 
to be absent from some of them. For most of the smaller objects, the bands are fairly shallow, 
consistent with their low albedos. Systematic changes in albedo and color from the Kuiper belt 
through the inner solar system could be linked to the sublimation loss of H2O ice (Grundy 2009; 
Lamy and Toth 2009). Reports of weak absorptions at 2.2 mm in spectra of Kuiper belt objects 
have been tentatively attributed to ammonia or ammoniated species (e.g., Delsanti et al. 2010) 
and an absorption at 2.27 mm in spectra of several objects has been interpreted as resulting from 
methanol ice (Cruikshank et al. 1998b; Merlin et al. 2012).

The dwarf planet Haumea along with its largest satellite Hi’iaka are noteworthy for their 
particularly deep water ice bands (e.g., Barkume et al. 2006; Trujillo et al. 2007; Pinilla-Alonso 
et al. 2009). Several members of the Haumea collisional family also have similar water-rich 
spectral characteristics, suggesting they could be fragments of the icy mantle of a differentiated 
target body (Brown et al. 2007; Leinhardt et al. 2010).

A similar catastrophic impact scenario may apply in the Pluto system (Canup 2005, 2011). 
Unlike Pluto, the largest satellite Charon has a water ice dominated surface (Buie et al. 1987). 
Additionally, Charon’s spectrum shows strong evidence for NH3 ice (Cook et al. 2007). Charon 
may represent a sample of Pluto’s mantle material which was too small to retain the more 
volatile CH4, N2, and CO ices which mask Pluto’s own mantle from view. The compositions of 
Pluto’s small satellites remain unknown.

SUMMARY

Minerals and ices are ubiquitous in the solar system. From the Earth and farther from the 
Sun, water ice and other more volatile ices are common. As our observational technology has 
improved, we have found more minerals and other solid compounds in more locations. If water 
ice in the poles of Mercury can be confirmed, water ice would be found throughout the solar 
system on every planet and/or their moons with the exception of Venus.
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The Earth displays the greatest mineralogic diversity in the Solar System, due to two 
primary factors. First and foremost, the active volcanism, plate tectonics, and weather in a 
relatively warm environment provide the conditions for many chemical processes, leading to 
diverse compositions. Second, because we live on the Earth, we can study it in far greater detail 
than any other moon or planet. 

But as we explore other worlds, we are finding they too have diverse mineralogy. On Mars, 
for example, it was difficult to prove a case for any clay minerals on the surface as recently as a 
decade or so ago. But now with orbiting imaging spectrometers with spatial resolutions as low 
as about 20 m, smaller outcrops are being found to contain diverse mineralogy indicative of a 
more complex geologic history.

There are outstanding issues. Some small absorptions seen in spectra of outer solar system 
objects have yet to be identified. For example, possible SO2 absorptions on the outer three 
icy Galilean satellites need confirmation. A 2.42-mm absorption seen in spectra of Saturn’s 
satellites, identified as trapped H2, needs confirmation, and a 5.01-mm absorption seen in 
spectra of Titan remains unidentified. Some absorptions seen in CRISM spectra of Mars are 
also still unidentified or poorly understood. This implies a continuing need for improving 
spectral libraries of reference compounds.

Water ice dominates most icy objects in the outer solar system. But why is the ice so 
pure in Saturn’s rings and most satellites, yet Titan is covered in organics? Similarly, Pluto 
is covered in organics yet its moon Charon displays a relatively pure water ice surface. What 
drives most surfaces to show such pure water surfaces with few other ices is unknown. Where 
are the expected signatures of ammonia or ammonia-water mixtures? If methane is so abundant 
on Pluto, Triton, Eris, Makemake, and Titan, why is it not abundant on other objects?

Why are some objects very high in albedo with relatively pure ice surfaces while others 
are very dark (e.g., Phoebe, the two faces of Iapetus, brighter Hyperion, dark Callisto versus 
brighter Ganymede and Europa)? Some of the answers certainly relate to resurfacing (e.g., 
Europa and Enceladus), whereas others display ancient heavily cratered surfaces that are still 
bright (e.g., Rhea) and still other ancient surfaces are dark (e.g., Phoebe). The mechanisms 
leading to these diverse surface compositions are not completely understood, although there is 
a trend in the Jupiter and Saturn systems for increasing darkening on moons farther from the 
planet, implying that dark dust preferentially coats the outer moons, probably from sources 
external to the system.

How are molecules complexed with one another, as in the case of CO2 and CH4 enclathrated 
in H2O, and what are the spectroscopic and physical-chemical implications of the processes that 
lead to complexing?

If water condenses below 135 K, it is expected to be amorphous. Yet the spectra of water ice 
throughout the solar system is dominated by crystalline ice (where our spectra are of sufficient 
quality to distinguish between amorphous versus crystalline water ice), with the exception of 
icy satellites orbiting within Jupiter’s inner magnetosphere where intense radiation can destroy 
the ice crystal structure. Even in the outer solar system beyond Saturn, where temperatures are 
well below 90 K, observed water ices are at least partially crystalline. Why we do not observe 
more amorphous ice is a mystery.

Spectroscopy and imaging spectroscopy have played major roles in exploring the solar 
system, and will continue to do so into the future.
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